
CHAPTER 5

MEMORY MANEGEMENT

Memory Allocation

• dynamic storage allocation problem concerns
how to satisfy a request of size n from a list of
free holes.

• The solutions :
– First fit.

• Allocate the first hole that is big enough.

• Searching can start either at the beginning of the set of
holes or at the location where the previous first-fit search
ended.

• We can stop searching as soon as we find a free hole that is
large enough.

Memory Allocation

• Best fit.
– Allocate the smallest hole that is big enough.
– We must search the entire list, unless the list is

ordered by size.

• Worst fit.
– Allocate the largest hole.
– we must search the entire list, unless it is sorted by

size.
– This strategy produces the largest leftover hole, which

may be more useful than the smaller leftover hole
from a best-fit approach.

Fragmentation

• is a phenomenon in which storage space is
used inefficiently, reducing capacity or
performance and often both.

• There are two different fragmentation:

– external fragmentation and

– internal fragmentation.

External fragmentation

• exists when there is enough total memory space
to satisfy a request but the available spaces are
not contiguous:
– storage is fragmented into a large number of small

holes.

– That happen when the processes are loaded and
removed from memory,

– the free memory space is broken into little pieces.

– If all these small pieces of memory were in one big
free block instead, we might be able to run several
more processes this solution called compaction.

Internal fragmentation

• exists when the memory allocated to a process
may be slightly larger than the requested
memory.

• Consider a hole of 18,464 bytes.
– Suppose that the next process requests 18,462 bytes.

– If we allocate exactly the requested block, we are left
with a hole of 2 bytes.

– to avoiding this problem is to break the physical
memory into fixed-sized blocks and allocate memory
in units based on block size.

Segmentation

• is a memory-management scheme that
supports programmer view of memory.

• programmer thinks of it as a main program
with a set of methods, procedures, or
functions.

• It may also include various data structures:
objects, arrays, stacks, variables, and so on.

• Each of these modules or data elements is
referred to by name.

Segmentation

• Segments vary in length,

• the length of each is defined by its purpose in
the program.

• Each segment has a name and a length.

• Segments are numbered and are referred to
by a segment number, rather than by a
segment name.

• Each segment has a segment base and a
segment limit stored in segment table.

Segmentation

• Consider we have five segments numbered
from 0 through 4.

• The segment table has a separate entry for
each segment,
– the beginning address of the segment in physical

memory (or base)

– and the length of that segment (or limit).

– For example, segment 2 is 400 bytes long and
begins at location 4300.

Segmentation

Paging

• breaking physical memory into fixed-sized blocks
called frames

• breaking logical memory into blocks of the same
size called pages.

• When a process is to be executed, its pages are
loaded into any available memory frames from
their source.

• The backing store is divided into fixed-sized
blocks that are the same size as the memory
frames or clusters of multiple frames.

Paging

• Every address generated by the CPU is divided
into two parts:
– a page number (p) and

– a page offset (d).

– The page number is used as an index into a page
table.

– The page table contains the base address of each page
in physical memory.

– This base address is combined with the page offset to
define the physical memory address that is sent to the
memory unit

Paging

Paging

Paging

• The size of a page is a power of 2,

• varying between 512 bytes and 1 GB per page,
depending on the computer architecture.

• If the size of the logical address space is 2m,
and a page size is 2n bytes,
– then the high-order m - n bits of a logical address

designate the page number,

– and the n low-order bits designate the page
offset.

Paging

Paging

• the logical address, n = 2 and m = 4.
• Using a page size of 4 bytes and
• a physical memory of 32 bytes (8 pages),
• Logical address 0 is page 0, offset 0.
• we find that page 0 is in frame 5.

– logical address 0 maps to physical address 20 [= (5 × 4) + 0].

• Logical address 3 (page 0, offset 3)
– maps to physical address 23 [= (5 × 4) + 3].

• Logical address 4 is page 1, offset 0;
– page 1 is mapped to frame 6.
– logical address 4 maps to physical address 24 [= (6 × 4) + 0].

• Logical address 13 maps to physical address 9.

Paging

• we have no external fragmentation

• we may have some internal fragmentation.

• If the memory requirements of a process do not
match page boundaries, the last frame allocated
may not be completely full.
– For example, if page size is 2,048 bytes,

– a process of 72,766 bytes will need 35 pages plus
1,086 bytes.

– It will be allocated 36 frames, resulting in internal
fragmentation of 2,048 − 1,086 = 962 bytes.

Paging

• small page sizes are desirable.
• overhead is involved in each page-table entry,
• and this overhead is reduced as the size of the pages

increases.
• disk I/O is more efficient when the amount data being

transferred is larger.
• page sizes have grown over time as processes, data

sets, and main memory have become larger.
• Today, pages are between 4 KB and 8 KB in size.
• Some CPUs and kernels even support multiple page

sizes.
– For instance, Solaris uses page sizes of 8 KB and 4 MB,

depending on the data stored by the pages.

References

• ABRAHAM SILBERSCHATZ, PETER BAER
GALVIN, GREG GAGNE “OPERATING SYSTEM
CONCEPTS” NINTH EDITION, Wiley

