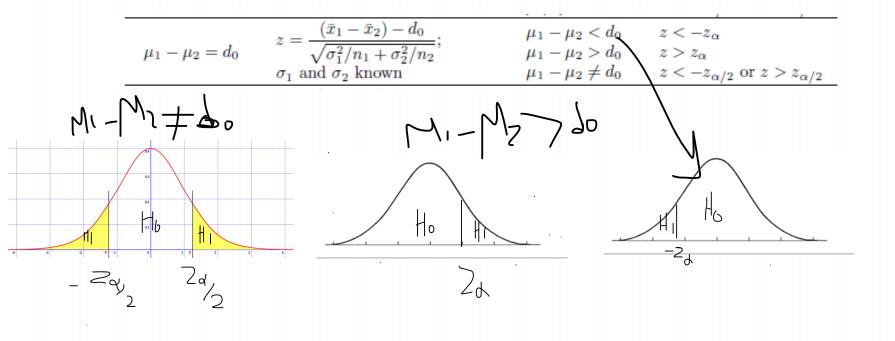


Statistical Analysis section

Two Samples: Tests on Two Means

Eng. Aya Hatem

Two Samples: Tests on Two Means when variances known



Two Samples: Tests on Two Means when variances known

10.30 Test H_0 : $\mu 1 = \mu 2$ against H_1 : $\mu 1 \neq \mu 2$. Use a 0.05 level of significance (α).

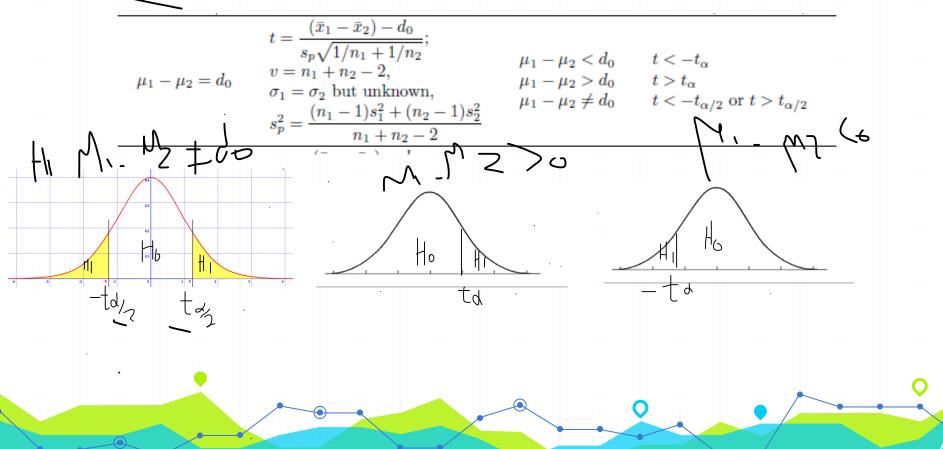
Sample 1	Sample 2	
Sample size $(n_1) = 25$	Sample size $(n_2) = 36$	
Sample mean $(\overline{X_1}) = 81$	Sample mean $(\overline{X_2}) = 76$	
Population s.d. $(\sigma_1) = 5.2$	Population s.d. $(\sigma_2) = 3.4$	М.
	$H_0: \mu_1 = \mu_2,$	
	$H_0: \mu_1 \downarrow \mu_2, \ H_1: \mu_1 \not = \mu_2.$	3 4

Since the variances are known, we obtain $\underline{z} = \frac{81-76}{\sqrt{5.2^2/25+3.5^2/36}} = \underline{4.22}$. So, P-value ≈ 0

and we conclude that $\mu_1 > \mu_2$.

4-0.025

Two Samples: Tests on Two Means when variances unknown but equal



Two Samples: Tests on Two Means when variances unknown but equal $N_2 - N_1 = 0$

10.35 Test H_0 : $\mu = \mu 1$ against H_1 : $\mu = \mu 1$. Use a 0.05 level of significance (α).

Treatment	2.1	5.3	1.4	4.6	0.9
No Treatment	1.9	0.5	2.8	3.1	

Assume the populations to be approximately normal with equal variances.

$$H_0: \mu_1 - \mu_2 = 0,$$
 $H_1: \mu_1 - \mu_2 \leq 0.$
7 degrees of freedom.

 $\alpha = 0.05$

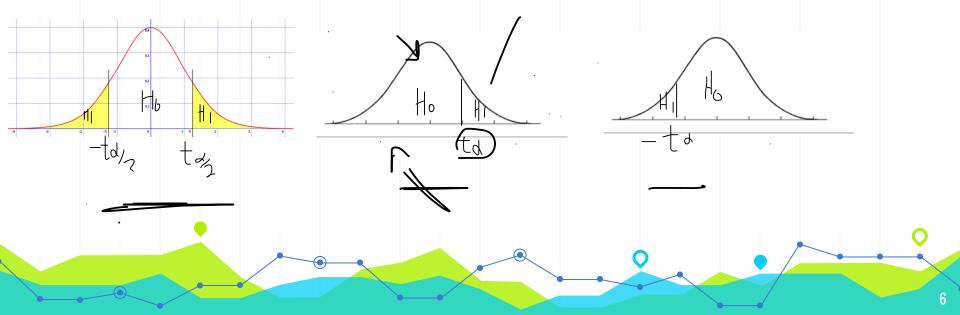
Critical region: t < -1.895 with 7 degrees of freedom.

Computation:
$$s_p = \sqrt{\frac{(3)(1.363) + (4)(3.883)}{7}} = \underbrace{1.674}_{\text{and}} \underbrace{t = \frac{2.075 - 2.860}{1.674\sqrt{1/4 + 1/5}}}_{\text{1.674}} = -0.70$$

Decision: Do not reject H_0 .

Two Samples: Tests on Two Means when variances unknown but unequal

$$\mu_1 - \mu_2 = d_0 \qquad \underbrace{t'} = \frac{\left(\bar{x}_1 - \bar{x}_2\right) - d_0}{\sqrt{s_1^2/n_1 + s_2^2/n_2}}; \\ \underline{v} = \frac{\left(s_1^2/n_1 + s_2^2/n_2\right)^2}{\frac{\left(s_1^2/n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2/n_2\right)^2}{n_2 - 1}}, \\ \sigma_1 \neq \sigma_2 \text{ and unknown} \qquad \mu_1 - \mu_2 < d_0 \qquad t' < -t_\alpha \\ \mu_1 - \mu_2 > d_0 \qquad t' > t_\alpha \\ \mu_1 - \mu_2 \neq d_0 \qquad t' < -t_{\alpha/2} \text{ or } t' > t_{\alpha/2} \end{cases}$$



Two Samples: Tests on Two Means when variances unknown but unequal $\lambda = \lambda_0$

10.39 Test $\underline{H_0}$: $\underline{\mu}2 - \mu 1 = \underline{10}$ against H_1 : $\mu 2 - \mu 1 \ge \underline{10}$. Use $\alpha = 0.1$.

Company 1	102	86	98	109	92			
Company 2	81	165	97	134	92	87	114	

Assume the populations to be approximately normal with **unequal variances**.

$$H_0: \mu_{II} - \mu_I = 10,$$

 $H_1: \mu_{II} - \mu_I > 10.$

 $\alpha = 0.1$.

Degrees of freedom is calculated as

$$v = \frac{(78.8/5 + 913.333/7)^2}{(78.8/5)^2/4 + (913/333/7)^2/6} = \underline{7.38},$$

hence we use 7 degrees of freedom with the critical region t > 2.995

Computation: $t = \frac{(110-97.4)-10}{\sqrt{78.800/5+913.333/7}} = 0.22.$

Decision: Fail to reject H_0 .

