Faculty of Computers \& Artificial Intelligence
$1^{\text {st }}$ Term (January 2020) Final Exam
Information Security and Digital Forensics Program
Networking and Mobile Technologies Program
Course Code: FBS121, NBS121 Level: $1^{\text {st }}$ level
Subject: Physics

Benha University
Date: 16/01/2020
Time: 2 Hours
Total Marks: 50 Marks
Examiner(s): Dr. Salah Hamza

Choose the correct answer and shaded its circle in the answer sheet.

1. The magnitude of $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$ are 12 units and 8 units. The largest and smallest values for $\overrightarrow{\mathrm{R}}=\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}$ are: (a) 14.4 and 8 (b) 10 and 5 (c) 20 and 4 .
2. In Fig. 1 the electric field $\mathrm{E}=5 \mathrm{NC}^{-1}$ then the electric flux through the area $\mathrm{A}=4 \mathrm{~m}^{2}$ is (a) $20 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (b) $10 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) $0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
3. The units of the quantity $\mathrm{k}_{\mathrm{e}} \mathrm{q}_{1} \mathrm{q}_{2}$ is (a) Nm^{2} (b) $\mathrm{Nm}^{-2} \mathrm{C}^{2}$ (c) $\mathrm{Nm}^{-2} \mathrm{C}^{-2}$
4. If you have two plates capacitor with charge Q and hollow sphere with charge Q distributed on the surface, then the electric field will be similar at: (a) Outside both of them (b) Inside the capacitor and outside the sphere (c)Outside the capacitor and inside the sphere
5. Figure 2 shows the electric field lines. So, the electric flux: (a) increases as we go from "a" to "b" (b) increases as we go from "c" to "b" (c) is the same at "a", "b" and "c".
6. If the electric field $E=0$ at a point P then, the electric flux must Φ_{E} be: (a)constant at P (b) zero at P (c) very high at P
7. From Fig. 3, the value of the resultant vector is (a) $R=A+B$ (b) $R=A-B$ (c) $\mathrm{R}=\mathrm{B}-\mathrm{A}$
8. Object A has a charge of $2 \mu \mathrm{C}$, and object B has a charge of $8 \mu \mathrm{C}$. Which statement is true? (a) $\overrightarrow{\mathrm{F}}_{\mathrm{AB}}=-4 \overrightarrow{\mathrm{~F}}_{\mathrm{BA}}$ (b) $\overrightarrow{\mathrm{F}}_{\mathrm{AB}}=-\overrightarrow{\mathrm{F}}_{\mathrm{BA}}$ (c) $4 \overrightarrow{\mathrm{~F}}_{\mathrm{AB}}=-\overrightarrow{\mathrm{F}}_{\mathrm{BA}}$
9. The units of the electric field E is (a) NC^{-2} (b) NC^{2} (c) NC^{-1}
10. Five positive charges $(5 q)$ are arranged symmetrically around the circumference of a circle of radius r. The electric field at the center of the circle is: (a) 0
(b) $\mathrm{kq} / \mathrm{r}^{2}$
(c) $5 \mathrm{kq} / \mathrm{r}^{2}$
11. Material of sphere in Fig. 4 is (a) insulator (b) conductor (c) semiconductor
12. The units of the Coulomb's constant k_{e} are (a) NC^{-2} (b) $\mathrm{Nm}^{2} \mathrm{C}^{-2}$ (c) NC^{-1}
13. The electric field, E, is given by: (a) $\mathrm{kq}_{1} \mathrm{q}_{2} / \mathrm{r}$ (b) kq / r (c) F / q
14. The magnitude of the electric force F between charges q_{1} and q_{2} separated by distance r is given by: (a) $\mathrm{Fr}=\mathrm{k}_{\mathrm{e}} \mathrm{q}_{1} \mathrm{q}_{2}$ (b) $\mathrm{Fr}^{2}=\mathrm{k}_{\mathrm{e}} \mathrm{q}_{1} \mathrm{q}_{2}$ (c) $\mathrm{F}=\mathrm{k}_{\mathrm{e}} \mathrm{q}_{1} \mathrm{q}_{2} \mathrm{r}^{2}$
15. The electric field lines in Fig 5 satisfy the relation: (a) $\underline{\nabla} \cdot \underline{E}=\rho$
(b) $\underline{\nabla} \cdot \underline{E}=\rho / \varepsilon_{0}$
(c) $\underline{\nabla} \cdot \underline{E}=0$
16. The units of the electric flux Φ_{E} are (a) NmC^{-1}
(b) $\mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) NC^{-1}
17. Which of the following is incorrect:
(a) $\underline{\nabla} \cdot \underline{E}=\rho / \varepsilon_{o}$
(b) $\underline{\nabla} \cdot \underline{\mathrm{D}}=\rho$ (c) $\underline{\nabla} \cdot \underline{D}=\rho / \varepsilon_{o}$

Fig. 3

Fig. 4

Fig. 5
18. According to Gauss's law, the total flux Φ_{E} out of any closed surface is:
(a) $\mathrm{Q} / \varepsilon_{0}$
(b) $\mathrm{Q} \varepsilon_{0}$
(c) ε_{0} / Q
19. Figure 6 shows a conducting sphere of radius R with charge Q. Then, the electric field at point "a" is (a) zero (b) $k_{e} Q / r^{2}$ (c) $k_{e} Q / R^{2}$
20. Also from Fig. 6 the electric field at point " b " is (a) zero (b) $k_{e} Q / r^{2}$ (c) $\mathrm{k}_{\mathrm{e}} \mathrm{Q} / \mathrm{R}^{2}$

Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig. 10
33. The electric flux at $r=b$ is (a) 0 (b) $-Q / \varepsilon_{0}$ (c) $-2 Q / \varepsilon_{\text {o }}$
(b) $r^{-1} \partial / \partial r\left(\mathrm{rD}_{\mathrm{r}}\right)$ (c) $\partial / \partial \mathrm{z}\left(\mathrm{rD}_{\mathrm{z}}\right)$
35. The charge "A" in Fig. 11 is (a) positive (b) negative (c) no answer
36. The charge " B " in Fig. 11 is (a) positive (b) negative (c) no answer
37. The volume charge density ρ of the field $\underline{D}=\hat{\mathrm{r}}$ is: (a) $1 / \mathrm{r}$ (b) $\mathrm{r}^{-1} \partial / \partial \mathrm{r}\left(\mathrm{rD} \mathrm{r}_{\mathrm{r}}\right)$

Fig. 11 (c) $\partial \mathrm{r}\left(\mathrm{rD}_{\mathrm{r}}\right)$
38. The electric flux through the surface in Fig. 12 is: (a) $-3 / \varepsilon_{0}$ (b) $3 / \varepsilon_{0}$ (c) $-6 / \varepsilon_{0}$

Fig. 12

- Figure 13 shows a charged particle " q " moving in a magnetic field " B ". The magnetic force F_{B} is always directed toward the center of the circle and a centripetal force F_{c} is upward the center. Then,

40. The angular velocity " ω " is (a) r / v (b) v / r (c) vr
41. The magnetic force F_{B} is (a) quB (b) $\mathrm{mv}^{2} / \mathrm{r}$ (c) qBr
42. The centripetal force F_{c} is (a) quB (b) $\mathrm{mv}^{2} / \mathrm{r}$ (c) qBr
43. The radius of the path "r" is (a) $\mathrm{mv} / \mathrm{qB}$ (b) qB / m (c) $\mathrm{qBr} / \mathrm{m}$
44. The velocity of the particle " v " is (a) $\mathrm{mv} / \mathrm{qB}$ (b) qB / m (c) $\mathrm{qBr} / \mathrm{m}$
45. Chose the correct equation (a) $\mathrm{mr}=\mathrm{quB}$ (b) $\mathrm{mB}=\mathrm{qBr}$ (c) $\mathrm{mv}=\mathrm{qBr}$
46. The angular velocity of the particle " ω " is (a) $\mathrm{mv} / \mathrm{qB}$ (b) qB / m (c)

Fig. 13 $\mathrm{qBr} / \mathrm{m}$
47. The periodic time " T " can be calculated from (a) $\mathrm{qBr} / \mathrm{v}$ (b) $\mathrm{qBv} / 2 \pi \mathrm{r}$ (c) $2 \pi \mathrm{~m} / \mathrm{qB}$

- Proton of charge $\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}$ and mass $\mathrm{m}=1.67 \times 10^{-27} \mathrm{Kg}$ move in a circular orbit with radius 2 cm under the effect of a magnetic field intensity 0.2 T . Then

48. The proton velocity in its orbit is (a) $8.83 \times 10^{6} \mathrm{~m} / \mathrm{s}$ (b) $3.83 \times 10^{5} \mathrm{~m} / \mathrm{s}$ (c) $33.8 \times 10^{4} \mathrm{~m} / \mathrm{s}$
49. The proton angular frequency is (a) $2.92 \times 10^{3} \mathrm{~s}^{-1}$ (b) $9.2 \times 10^{5} \mathrm{~s}^{-1}$ (c) $1.92 \times 10^{7} \mathrm{~s}^{-1}$
50. The time required for one complete revolution is (a) $0.237 \times 10^{-6} \mathrm{~s}$ (b) $0.237 \times 10^{-5} \mathrm{~s}$ (c) $0.27 \times 10^{-8} \mathrm{~s}$

GOOD LUCK,

Prof. Dr. SaldhHama

