

Faculty of Computers & Artificial Intelligence

1st Term (January 2021) Final Exam Information Security and Digital Forensics Program Networking and Mobile Technologies Program Course Code: FBS121, NBS121 Subject: Physics

Benha University

Date: 20/ 3 /2021 Time: 2 Hours Total Marks: 50 Marks Examiner(s): Prof. Dr. Salah Hamza

15µ**()**A

5u0

Fig.1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Е

Ζ

2A

Choose the correct answer and shaded its circle (like this ●) in the answer table.

- 1. Coulomb's law is given by: (a) $Fr^2 = k_e q_1 q_2$; (b) $F = k_e q r^{-1}$; (c) $F = k_e q r^2$
- 2. Coulomb constant k_e is measured in (a) $Nm^{-2}C^{-2}$ (b) $Nm^{-2}C^{2}$ (c) $Nm^{2}C^{-2}$
- 3. Object A has a charge of $2\mu C$, and object B has a charge of $6\mu C$. Which statement is true? (a) $\vec{F}_{AB} = -3\vec{F}_{BA}$ (b) $\vec{F}_{AB} = -\vec{F}_{BA}$ (c) $3\vec{F}_{AB} = -\vec{F}_{BA}$
- 4. For A and B in Fig.1 which statement is true?(a) $\vec{F}_{AB} = -\vec{F}_{BA}$ (b) $\vec{F}_{BA} = -3\vec{F}_{AB}$ (c) a and b
- 5. The electron and proton of a hydrogen atom are separated by a distance of about 5.3×10^{-11} m. The magnitudes of the electric force that each particle exerts on the other is (a) 2.8×10^8 N (b) 2.8×10^{-8} N (c) 8.2×10^{-8} N (taking $k_e = 9 \times 10^9$)
- 6. In Fig. 2 the electric field lines are (a) converge (b) unsymmetrical distributed (c) a and b
- 7. The units of the electric field E is (a) NC^{-2} (b) NC^{2} (c) NC^{-1}
- 8. The units of F/k_e is given by (a) C^2m^{-2} (b) m^2C^{-2} (c) $Nm^{-2}C^{-2}$
- 9. The units of the electric flux Φ are (a) NmC⁻¹ (b) Nm²C⁻¹ (c) NC⁻¹
- 10. In Fig. 3, $E = 5 \text{ NC}^{-1}$ and $A = 4 \text{ m}^2$ then the electric flux Φ through xy plane is (a) $\frac{5}{4} \text{ Nm}^2 \text{C}^{-1}$ (b) $\Phi = 40 \text{ Nm}^2 \text{C}^{-1}$ (c) $\Phi = 0 \text{ Nm}^2 \text{C}^{-1}$
- 11. In Fig.3, the electric flux through xz plane is (a) $\frac{5}{8}$ Nm²C⁻¹(b) 40 Nm²C⁻¹(c) 0 Nm²C⁻¹
- 12. In Fig.4 the flux of E through A is (a) $0 \text{ Nm}^2 \text{C}^{-1}$ (b) EA $\text{Nm}^2 \text{C}^{-1}$ (c) E/A $\text{Nm}^2 \text{C}^{-1}$
- 13. Charges on conducting sphere are distributed at (a) center (b) outer surface (c) randomly
- 14. Fig. 5 shows a point charge q surrounded by a spherical surface of radius r, the electric flux Φ is given by: (a) E/ϵ_o (b) $4\pi q/r^2$ (c) $4\pi k_e q$
- 15. The electrical work done on moving charge q distance Δx is (a) $q\Delta x$ (b) $E\Delta x$ (c) $qE\Delta x$
- 16. For parallel-plate capacitor filled with dielectric, C, is (a) $\epsilon_0 A/d$ (b) $k\epsilon_0 A/d$ (c) kA/d
- 17. Object A has a charge of $2\mu C$, and object B has a charge of $-6\mu C$. Which statement is true? (a) $\vec{F}_{AB} = \vec{F}_{BA}$ (b) $\vec{F}_{AB} = -\vec{F}_{BA}$ (c) $3\vec{F}_{AB} = -\vec{F}_{BA}$ (b) $\vec{F}_{AB} = -\vec{F}_{BA}$ (c) $3\vec{F}_{AB} = -\vec{F}_{BA}$
- 18. The flux of a constant electric field of 3 NC^{-1} in the z-direction through a rectangle with area 6 m^2 in the xz-plane. (a) $0 \text{ Nm}^2 \text{C}^{-1}$ (b) $2 \text{ Nm}^2 \text{C}^{-1}$ (c) $18 \text{ Nm}^2 \text{C}^{-1}$
- 19. The unit "Farad" is equivalent to: (a) VC (b) V/C (c) C/V
- 20. The unit "Volt" is equivalent to: (a) J/C (b) C/J (c) JC
- 21. Figure 6 shows a conducting sphere of radius R with charge Q. Then, the electric field at point a and b are: (a) zero, k_eQ/r^2 (b) k_eQ/r^2 , zero (c) zero, zero

R

