Faculty of Computers \& Artificial Intelligence
$1^{\text {st }}$ Term (January 2021) Final Exam
Information Security and Digital Forensics Program
Networking and Mobile Technologies Program
Course Code: FBS121, NBS121
Level: ${ }^{\text {st }}$ level

Benha University
Date: 20/3/2021
Time: 2 Hours
Total Marks: 50 Marks
Examiner(s): Prof. Dr. Salah Hamza

Subject: Physics
Choose the correct answer and shaded its circle (like this -) in the answer table.

1. Coulomb's law is given by:
: (a) $\mathrm{Fr}^{2}=\mathrm{k}_{\mathrm{e}} \mathrm{q}_{1} \mathrm{q}_{2}$;
(b) $\mathrm{F}=\mathrm{k}_{\mathrm{e}} \mathrm{qr}^{-1}$;
(c) $\mathrm{F}=\mathrm{k}_{\mathrm{e}} \mathrm{qr}^{2}$
2. Coulomb constant k_{e} is measured in (a) $\mathrm{Nm}^{-2} \mathrm{C}^{-2}$
(b) $\mathrm{Nm}^{-2} \mathrm{C}^{2}$ (c) $\mathrm{Nm}^{2} \mathrm{C}^{-2}$
3. Object A has a charge of $2 \mu \mathrm{C}$, and object B has a charge of $6 \mu \mathrm{C}$. Which statement is true? (a) $\overrightarrow{\mathrm{F}}_{\mathrm{AB}}=-3 \overrightarrow{\mathrm{~F}}_{\mathrm{BA}}$
(b) $\overrightarrow{\mathrm{F}}_{\mathrm{AB}}=-\overrightarrow{\mathrm{F}}_{\mathrm{BA}}$
(c) $3 \overrightarrow{\mathrm{~F}}_{\mathrm{AB}}=-\overrightarrow{\mathrm{F}}_{\mathrm{BA}}$
4. For A and B in Fig. 1 which statement is true? (a) $\overrightarrow{\mathrm{F}}_{\mathrm{AB}}=-\overrightarrow{\mathrm{F}}_{\mathrm{BA}}$ (b) $\overrightarrow{\mathrm{F}}_{\mathrm{BA}}=-3 \overrightarrow{\mathrm{~F}}_{\mathrm{AB}}$ (c) a and b
5. The electron and proton of a hydrogen atom are separated by a distance of about $5.3 \times 10^{-11} \mathrm{~m}$. The magnitudes of the electric force that each particle exerts on the other is
(a) $2.8 \times 10^{8} \mathrm{~N}$
(b) $2.8 \times 10^{-8} \mathrm{~N}$
(c) $8.2 \times 10^{-8} \mathrm{~N}$ (taking $\mathrm{k}_{\mathrm{e}}=9 \times 10^{9}$)
6. In Fig. 2 the electric field lines are (a) converge (b) unsymmetrical distributed (c) a and b
7. The units of the electric field E is (a) NC^{-2}
(b) NC^{2} (c) NC^{-1}

Fig. 1

Fig. 2
8. The units of $\mathrm{F} / \mathrm{k}_{\mathrm{e}}$ is given by (a) $\mathrm{C}^{2} \mathrm{~m}^{-2}$
(b) $\mathrm{m}^{2} \mathrm{C}^{-2}$
(c) $\mathrm{Nm}^{-2} \mathrm{C}^{-2}$
9. The units of the electric flux Φ are (a) NmC^{-1}
(b) $\mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) NC^{-1}
10. In Fig. 3, $E=5 \mathrm{NC}^{-1}$ and $\mathrm{A}=4 \mathrm{~m}^{2}$ then the electric flux Φ through xy plane is
(a) $\frac{5}{4} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(b) $\Phi=40 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(c) $\Phi=0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$

11. In Fig.3, the electric flux through $x z$ plane is (a) $\frac{5}{8} \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (b) $40 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) $0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
12. In Fig. 4 the flux of E through A is (a) $0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (b) $E A \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) $\mathrm{E} / \mathrm{ANm}^{2} \mathrm{C}^{-1}$
13. Charges on conducting sphere are distributed at (a) center (b) outer surface (c) randomly
14. Fig. 5 shows a point charge q surrounded by a spherical surface of radius r, the electric

Fig. 4

ic flux Φ is given by: (a) $\mathrm{E} / \varepsilon_{\mathrm{o}}$ (b) $4 \pi \mathrm{q} / \mathrm{r}^{2}$ (c) $4 \pi \mathrm{k}_{\mathrm{e}} \mathrm{q}$
15. The electrical work done on moving charge q distance Δx is (a) $q \Delta x$ (b) $E \Delta x$ (c) $q E \Delta x$
16. For parallel-plate capacitor filled with dielectric, C, is (a) $\varepsilon_{0} A / d$ (b) $k \varepsilon_{0} A / d$ (c) $k A / d$
17. Object A has a charge of $2 \mu \mathrm{C}$, and object B has a charge of $-6 \mu \mathrm{C}$. Which statement is

Fig. 5 true? (a) $\stackrel{\rightharpoonup}{\mathrm{F}}_{\mathrm{AB}}=\stackrel{\rightharpoonup}{\mathrm{F}}_{\mathrm{BA}}$
(b) $\overrightarrow{\mathrm{F}}_{\mathrm{AB}}=-\stackrel{\rightharpoonup}{\mathrm{F}}_{\mathrm{BA}}$
(c) $3 \overrightarrow{\mathrm{~F}}_{\mathrm{AB}}=-\overrightarrow{\mathrm{F}}_{\mathrm{BA}}$
18. The flux of a constant electric field of $3 \mathrm{NC}^{-1}$ in the z-direction through a rectangle with area $6 \mathrm{~m}^{2}$ in the xz-plane. (a) $0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(b) $2 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(c) $18 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
19. The unit "Farad" is equivalent to: (a) VC
(b) V / C (c) C / V
20. The unit "Volt" is equivalent to: (a) J/C
(b) C / J (c) JC
21. Figure 6 shows a conducting sphere of radius R with charge Q. Then, the electric field at

point a and b are: (a) zero, $\mathrm{k}_{\mathrm{e}} \mathrm{Q} / \mathrm{r}^{2}$
(b) $\mathrm{k}_{\mathrm{e}} \mathrm{Q} / \mathrm{r}^{2}$, zero
(c) zero, zero

- Figure 7 shows a charged particle " q " moving in a magnetic field " B ".Then,

22. The angular velocity " ω " is (a) r / v (b) v / r (c) $v r$
23. The magnetic force F_{B} is (a) quB (b) $\mathrm{mv}^{2} / \mathrm{r}$ (c) qBr
24. The centripetal force F_{c} is (a) $q \cup B$ (b) $\mathrm{mv}^{2} / \mathrm{r}$ (c) qBr
25. The radius of the path " r " is (a) $\mathrm{mv} / \mathrm{qB}$ (b) qB / m (c) $\mathrm{qBr} / \mathrm{m}$
26. The velocity of the particle " v " is (a) $\mathrm{mv} / \mathrm{qB}$ (b) $q B / m$ (c) $q B r / m$

27. Chose the correct equation (a) $\mathrm{mr}=\mathrm{quB}$ (b) $\mathrm{mB}=\mathrm{qBr}$ (c) $\mathrm{mv}=\mathrm{qBr}$

Fig. 7
28. The angular velocity of the particle " ω " is (a) $\mathrm{mv} / \mathrm{qB}$ (b) qB / m (c) $\mathrm{qBr} / \mathrm{m}$
29. The periodic time "T" can be calculated from (a) $\mathrm{qBr} / \mathrm{v}$ (b) $\mathrm{qBv} / 2 \pi \mathrm{r}$ (c) $2 \pi \mathrm{~m} / \mathrm{qB}$
30. The mass of the particle " m " can be calculated from (a) $\mathrm{qBr} / \mathrm{v}$ (b) $\mathrm{qBv} / 2 \pi \mathrm{r}$ (c) $\mathrm{Bur} / \mathrm{q}$

- For the two charges in Fig. 8 the electric field due to:

31. q_{1} at P is (a) $-0.36 \times 10^{4} \mathrm{~V}$
(b) $0.76 \times 10^{4} \mathrm{~V}$
(c) $1.12 \times 10^{4} \mathrm{~V}$
32. q_{2} at P is (a) $-0.36 \times 10^{4} \mathrm{~V}$
(b) $0.76 \times 10^{4} \mathrm{~V}$
(c) $1.12 \times 10^{4} \mathrm{~V}$
33. q_{1} and q_{2} (total) at P is (a) $-0.36 \times 10^{4} \mathrm{~V}$
(b) $0.76 \times 10^{4} \mathrm{~V}$
(c) $1.12 \times 10^{4} \mathrm{~V}$
34. The capacitance of parallel-plate capacitor is (a) $\mathrm{Ad} / \varepsilon_{0}$, (b) $\varepsilon_{0} \mathrm{~d} / \mathrm{A}$ (c) $\varepsilon_{0} \mathrm{~A} / \mathrm{d}$

Fig. 8
35. In \qquad , electric charges move freely (a) conductors (b) insulator (c) rubber
36. Charging by \qquad requires no contact with objects (a)conduction (b)induction (c)reduction
37. The change in electric potential energy of charge q moving a distance Δx in an electric field is given by: (a) $-\mathrm{qE} \Delta \mathrm{x}$ (b) $\mathrm{E} \Delta \mathrm{x}$ (c) $-\mathrm{q} \Delta \mathrm{x}$
38. The force F on a particle with charge q is: (a) E / q (b) q / E (c) $q E$
39. In Fig. 9 the equivalent capacitance is (a) $14 \mu \mathrm{~F}$ (b) $3.12 \mu \mathrm{~F}$ (c) $20 \mu \mathrm{~F}$
40. The capacitance C of a capacitor is measured in (a) Farad, (b) V / C (c) a and b
41. From Gauss law, the electric flux Φ is given by (a) $\mathrm{q}_{\text {in }} \varepsilon_{\mathrm{o}}$ (b) $\mathrm{q}_{\mathrm{in}} / \varepsilon_{\mathrm{o}}$ (c) $\varepsilon_{\mathrm{o}} / \mathrm{q}_{\mathrm{in}}$

42. The material of the sphere in the Fig. 10 is (a) insulator, (b) conductor (c) semiconductor

- Proton of charge $\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}$ and mass $\mathrm{m}=1.67 \times 10^{-27} \mathrm{Kg}$ move in a circular orbit with radius 2 cm under the effect of a magnetic field intensity 2 T . Then

43. The proton angular frequency is (a) $2.92 \times 10^{3} \mathrm{~s}^{-1}$ (b) $9.2 \times 10^{5} \mathrm{~s}^{-1}$ (c) $1.92 \times 10^{7} \mathrm{~s}^{-1}$

Fig. 10
44. The proton velocity in its orbit is (a) $8.83 \times 10^{6} \mathrm{~m} / \mathrm{s}$ (b) $3.83 \times 10^{5} \mathrm{~m} / \mathrm{s}$ (c) $33.8 \times 10^{4} \mathrm{~m} / \mathrm{s}$
45. Time required for one evolution is (a) $0.237 \times 10^{-6} \mathrm{~s}$
(b) $0.237 \times 10^{-5} \mathrm{~s}$
(c) $0.27 \times 10^{-8} \mathrm{~S}$
46. In Fig. 11 the flux of E through A is (a) $0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(b) $\mathrm{EA} \mathrm{Nm}^{2} \mathrm{C}^{-1}$
(c) $\mathrm{E} / \mathrm{ANm}^{2} \mathrm{C}^{-1}$
47. The units of $\mathrm{Fr}^{2} / \mathrm{k}_{\mathrm{e}}$ is given by (a) $\mathrm{C}^{2} \mathrm{~m}^{-2}$
(b) $\mathrm{m}^{2} \mathrm{C}^{-2}$
(c) C^{2}

Fig. 11
48. The flux of a constant electric field of $20 \mathrm{NC}^{-1}$ in the z-direction through a rectangle with area $10 \mathrm{~m}^{2}$ in the yz-plane. (a) $0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (b) $200 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) $2 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
49. The electric potential created by a point charge is measured in \qquad and given by \qquad (a) Volt, $\mathrm{k}_{\mathrm{e}} \mathrm{q}^{2} / \mathrm{r}^{2}$ (b) Volt, $\mathrm{k}_{\mathrm{e}} \mathrm{q} / \mathrm{r}^{2}$
(c) $\mathrm{J} / \mathrm{C}, \mathrm{k}_{\mathrm{e}} \mathrm{q} / \mathrm{r}$
50. The capacitance for parallel-plate capacitor is given by (a) $\varepsilon_{0} \mathrm{~A} / \mathrm{d}$
(b) $\mathrm{k} \varepsilon_{\mathrm{o}} \mathrm{A} / \mathrm{d}$
(c) kA / d

GOOD LUCK

Prof. Dr. Salah Hamza

