

Faculty of Computers & Artificial Intelligence 2st Term (June 2021) Final Exam Medical Informatics Program Course Code: MBS312 Level: 3rd level Subject: Biostatistics

Benha University Date: 12 / 06 /2021 Time: 3 Hours Total Marks: 50 Marks Examiner : Dr. Mohamed Abdelgawad

Answer all the following questions [4 questions in 4 pages] Question No. 1

[15 Marks]

[15 Marks]

A. To study the relationship between the student intelligence X and achievement in the biostatistics exam Y, the data were as follows:

 $\Sigma X = 60, \ \Sigma Y = 70, \ \Sigma X^2 = 406, \ \Sigma Y^2 = 536, \Sigma X Y = 374, \ N=10.$

Find the Correlation Coefficient between the two variables and determine its type. Also, find the equation of the regression line for the data to predict Y when X=20?.

B. Write briefly the characteristics of a good estimator and prove that the sample variance S^2 is an unbiased estimator of σ^2 ?

Question No. 2

- A. Consumer reports tested n=15 brands of vanilla yogurt and found the following numbers of calories per serving: 160, 200, 220, 230, 120, 180, 140, 130, 170, 180, 80, 120, 100, 170, 190. Find the sample mean and standard deviation. We assume that the sample was taken from approximately normally distributed population. Calculate 95% confidence interval for the mean, $t_{(0.025,14)} = 2.145$?
- B) A student received an **A** in Biostatistics (3 credits), a **C** in Mathematics (3 credits), a **B** in Machine Learning (4 credits), and a **D** in Databases (2credits). Assuming A=4 grade points, B=3grade points, C=2grade points, D=1 grade point, and F=0 grade points. Find the student's grade point Average (GPA).

Question No. 3

[10 Marks]

A. In two factories A and B located in the same industrial area, the Average weekly wages (in rupees) and the Variance are as follows:

Factory	Average	Variance
А	34.5	25
В	28.5	20.25

Which factory A or B has more variability (CVar) in individual wages?

B. An electronics company manufactures resistors that have a mean resistance of 100 ohms and a standard deviation of 10 ohms. The distribution of resistance is normal. Find the probability that a random sample of n=25 resistors will have an average resistance less than 95 ohms.

Question No. 4

[10 Marks]

A. Consider the following data:18, 15, 12, 6, 8, 2, 3, 5, 20, 10

Find the percentile rank of 12.

B. Complete the blanks

Class	Frequency	Class	Class	Cumulative	Percentage
		boundaries	Midpoints	Frequency	
100 - 104	2				
105 - 109	8				
110 - 114	18				•••••
115 - 119	13	•••••			••••
120 - 124	7				
125 - 129	1				
130 - 134	1				
Total					

Faculty of Computers & Artificial Intelligence 2st Term (June 2021) Final Exam Medical Informatics Program Course Code: MBS312 Level: 3rd level Subject: Biostatistics

Benha University Date: 12 / 06 /2021 Time: 3 Hours Total Marks: 50 Marks Examiner : Dr. Mohamed Abdelgawad

Model Answer

Solution Question No. 1

[15 Marks]

A. The linear correlation coefficient is given by

$$r = \frac{n\sum xy - (\sum x)(\sum y)}{\sqrt{[n\sum x^2 - (\sum x)^2][n\sum y^2 - (\sum y)^2]}}$$

$$= \sigma^{2}$$
Solution Question No. 2

A. The sample statistics were 159.3 for the sample mean and 43.5 for the

1- $\alpha=0.95 \rightarrow \alpha=0.05 \rightarrow \alpha/2=0.025$, Standard deviation= S = 43.5 ,n=15 95% confidence interval for μ is given by:

y'=a+bX=13-X=13-20=-7

B. 1- Characteristics of a good estimator: (unbiased)

The point estimator $\hat{\Theta}$ is an **unbiased estimator** for the parameter θ if

If the estimator is not unbiased, then the difference

 $E(\hat{\Theta}) = \theta$

is called the bias of the estimator $\hat{\Theta}$. 2- Characteristics of a good estimator: (with the least variance) Suppose that $\hat{\theta}_1$ and $\hat{\theta}_2$ are unbiased estimator of $\hat{\theta}_1$. Since $\hat{\theta}_1$ has smaller variance than $\hat{\theta}_2$. Then $\hat{\theta}_1$ is minimum variance than $\hat{\theta}_2$ is the best.

 $r = \frac{10(374) - 60(70)}{\sqrt{[10(406) - (60)^2][10(536) - (70)^2]}} = -1$

 $a = \frac{\sum y \quad \sum x^2 \quad - \ (\sum x)(\sum xy)}{n \quad \sum x^2 \quad - \ (\sum x)^2} = 13$

 $b = \frac{n \sum xy - (\sum x)(\sum y)}{n \sum x^2} = -1$

 $E(\hat{\Theta}) = \theta$

The correlation coefficient is perfect negative. To get the equation of the regression line

To prove that the sample variance S^2 is an unbiased estimator of σ^2

$$E(S^{2}) = E\left[\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}\right] = \frac{1}{n-1} E\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$
$$= \frac{1}{n-1} E\sum_{i=1}^{n} (X_{i}^{2} + \overline{X}^{2} - 2\overline{X}X_{i}) = \frac{1}{n-1} E\left(\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}\right)$$
$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\overline{X}^{2})\right]$$

since $E(X_i^2) = \mu^2 + \sigma^2$ and $E(\overline{X}^2) = \mu^2 + \sigma^2/n$, we have

 $E(S^{2}) = \frac{1}{n-1} \left[\sum_{i=1}^{n} (\mu^{2} + \sigma^{2}) - n(\mu^{2} + \sigma^{2}/n) \right]$ $= \frac{1}{n-1} (n\mu^{2} + n\sigma^{2} - n\mu^{2} - \sigma^{2})$ $= \sigma^{2}$

Biostatistics

standard deviation.

[15 Marks]

t $_{0.025,14} = 2.145$ t $_{0.025,14}(s/\sqrt{n}) = 2.145 (43.5 / √14) = 11.6$ 159.3 ± 2.145 (43.5 / √14) → (159.3 - 24.94 , 159.3+24.94) → (134.6, 184.24)

B. Course	Credits (w)	Grade (X)
Biostatistics	3	A (4 points)
Mathematics	3	C (2 points)
Machine Learning	4	B (3 points)
Databases	2	D (1 points)
	$\bar{x}_{i} = \sum w_{i} x_{i} = 3(4) + 3(2) +$	4(3) + 2(1) - 27
	$x = \frac{1}{\sum w_i} = \frac{1}{3+3+1}$	$\frac{1}{4+2} = 2.7$

The grade point average is 2.7

Solution Question No. 3

A. C.V.(A)
$$= \frac{\sigma}{\overline{x}} \cdot 100 = \frac{5}{34.5} \cdot 100 = 14.49$$

C.V.(B) $= \frac{\sigma}{\overline{x}} \cdot 100 = \frac{4.5}{28.5} \cdot 100 = 15.79$

Factory B has greater variability in individual wages, since C.V. of factory B is greater than C.V of factory A.

B.

Note that the sampling distribution of \overline{X} is normal, with mean $\mu_{\overline{X}} = 100$ ohms and a standard deviation of

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{25}} = 2$$

Therefore, the desired probability corresponds to the shaded area in Fig. 7-7. Standardizing the point $\overline{X} = 95$ in Fig. 7-7, we find that

$$z = \frac{95 - 100}{2} = -2.5$$

and therefore,

$$P(\overline{X} < 95) = P(Z < -2.5)$$

= 0.0062

Solution Question No. 4

A. Step 1. Ascendingly

2, 3, 5, 6, 8, 10, 12, 15, 18, 20

Step 2. Count how many numbers that are less than 12.

[10 Marks]

[10 Marks]

Step 3. Since we have 6 numbers < 12, then:

$$P = \frac{6 + .5}{10} \cdot 100 = 65$$
th percentile

The percentile rank of 12 is the 65th percentile.

B. Complete the blanks

Class	Frequency	Class	Class	Cumulative	Percentage
		boundaries	Midpoints	Frequency	
100 - 104	2	99.5 - 104.5	102	2	4%
105 - 109	8	104.5 - 109.5	107	10	16%
110 - 114	18	109.5 – 114.5	112	28	36%
115 - 119	13	114.5 – 119.5	117	41	26%
120 - 124	7	119.5 – 124.5	122	48	14%
125 - 129	1	124.5 – 129.5	127	49	2%
130 - 134	1	129.5 – 134.5	132	50	2%
Total	50				100%

GOOD LUCK,

نموذج اجابة امتحان الاحصاء العضوية المستوى الثالث معلوماتية طبية برامج خاصة

كلية الحاسبات والذكاءالاصطناعي

د/ محمد عبدالجواد احمد عبدالجواد

مدرس – كلية العلوم – قسم الرياضيات

تاريخ الإمتحان ٢٠٢١/٦/١٢ الزمن ٣ ساعات