Faculty of Computers \&Artificial Intelligence
$2^{\text {st }}$ Term (June 2021) Final Exam
Medical Informatics Program
Course Code: MBS312 Level: $3{ }^{\text {rd }}$ level
Subject: Biostatistics

Benha University
Date: 12 / 06 /2021
Time: 3 Hours
Total Marks: 50 Marks
Examiner : Dr. Mohamed Abdelgawad

Answer all the following questions [4 questions in 4 pages] Question No. 1

A. To study the relationship between the student intelligence X and achievement in the biostatistics exam Y , the data were as follows:

$$
\Sigma \mathrm{X}=60, \Sigma \mathrm{Y}=70, \Sigma \mathrm{X}^{2}=406, \Sigma \mathrm{Y}^{2}=536, \Sigma \mathrm{XY}=374, \quad \mathrm{~N}=10 .
$$

Find the Correlation Coefficient between the two variables and determine its type. Also, find the equation of the regression line for the data to predict Y when $\mathrm{X}=20$?.
B. Write briefly the characteristics of a good estimator and prove that the sample variance S^{2} is an unbiased estimator of $\boldsymbol{\sigma}^{2}$?

Question No. 2
[15 Marks]
A. Consumer reports tested $\mathrm{n}=15$ brands of vanilla yogurt and found the following numbers of calories per serving: 160, 200, 220, 230, 120, 180, 140, 130, 170, $180,80,120,100,170,190$. Find the sample mean and standard deviation. We assume that the sample was taken from approximately normally distributed population. Calculate 95% confidence interval for the mean, $\mathrm{t}_{(0.025,14)}=2.145$?
B) A student received an \mathbf{A} in Biostatistics (3 credits), a \mathbf{C} in Mathematics (3 credits), a \mathbf{B} in Machine Learning (4 credits), and a \mathbf{D} in Databases (2credits). Assuming $\mathbf{A}=4$ grade points, $\mathbf{B}=3$ grade points, $\mathbf{C}=2$ grade points, $\mathbf{D}=1$ grade point, and $\mathbf{F}=0$ grade points. Find the student's grade point Average (GPA).
Question No. 3
[10 Marks]
A. In two factories A and B located in the same industrial area, the Average weekly wages (in rupees) and the Variance are as follows:

Factory	Average	Variance
A	34.5	25
B	28.5	20.25

Which factory A or B has more variability (CVar) in individual wages?
B. An electronics company manufactures resistors that have a mean resistance of 100 ohms and a standard deviation of 10 ohms. The distribution of resistance is normal. Find the probability that a random sample of $\mathrm{n}=25$ resistors will have an average resistance less than 95 ohms.

Question No. 4

[10 Marks]
A. Consider the following data: $18,15,12,6,8,2,3,5,20,10$

Find the percentile rank of 12 .
B. Complete the blanks

Class	Frequency	Class boundaries	Class Midpoints	Cumulative Frequency	Percentage
100-104	2
105-109	8
110-114	18
115-119	13
120-124	7
125-129	1
130-134	1	\ldots
Total	\ldots		

Faculty of Computers \&Artificial Intelligence
$2^{\text {st }}$ Term (June 2021) Final Exam Medical Informatics Program Course Code: MBS312 Level: $3^{\text {rd }}$ level
Subject: Biostatistics

Benha University
Date: 12 / 06 /2021
Time: 3 Hours
Total Marks: 50 Marks
Examiner : Dr. Mohamed Abdelgawad

Model Answer

Solution Question No. 1

A. The linear correlation coefficient is given by

$$
r=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{\sqrt{\left[n \sum x^{2}-\left(\sum x\right)^{\wedge} 2\right]\left[\quad n \sum y^{2}-\left(\sum y\right)^{\wedge} 2\right]}}
$$

$$
r=\frac{10(374)-60(70)}{\sqrt{\left[10(406)-(60)^{\wedge} 2\right]\left[10(536)-(70)^{\wedge} 2\right]}}=-1
$$

The correlation coefficient is perfect negative. To get the equation of the regression line

$$
\begin{gathered}
a=\frac{\sum y \sum x^{2}-\left(\sum x\right)\left(\sum x y\right)}{n \sum x^{2}-\left(\sum x\right)^{2}}=13 \\
b=\frac{n \sum x y-\left(\sum x\right)\left(\sum y\right)}{n \sum x^{2}}-\frac{\left(\sum x\right)^{2}}{n}=-1
\end{gathered}
$$

$\boldsymbol{y}^{\prime}=\boldsymbol{a}+\boldsymbol{b} \mathrm{X}=13-\mathrm{X}=13-20=-7$
B. 1- Characteristics of a good estimator: (unbiased)

$$
\begin{aligned}
& \text { The point estimator } \hat{\Theta} \text { is an unbiased estimator for the parameter } \theta \text { if } \\
& \qquad E(\hat{\Theta})=\theta
\end{aligned}
$$

If the estimator is not unbiased, then the difference

$$
E(\Theta)-\theta
$$

is called the bias of the estimator Θ.
2- Characteristics of a good estimator: (with the least variance)
Suppose that $\hat{\theta}_{1}$ and $\hat{\theta}_{2}$ are unbiased estimator of $\hat{\theta}$. Since $\hat{\theta}_{1}$ has smaller variance than $\hat{\theta}_{2}$. Then $\hat{\theta}_{1}$ is minimum variance than $\hat{\theta}_{2}$ is the best.
To prove that the sample variance S^{2} is an unbiased estimator of $\boldsymbol{\sigma}^{2}$

$$
\begin{aligned}
E\left(S^{2}\right) & =E\left[\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}\right]=\frac{1}{n-1} E \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \\
& =\frac{1}{n-1} E \sum_{i=1}^{n}\left(X_{i}^{2}+\bar{X}^{2}-2 \bar{X} X_{i}\right)=\frac{1}{n-1} E\left(\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2}\right) \\
& =\frac{1}{n-1}\left[\sum_{i=1}^{n} E\left(X_{i}^{2}\right)-n E\left(\bar{X}^{2}\right)\right]
\end{aligned}
$$

since $E\left(X_{i}^{2}\right)=\mu^{2}+\sigma^{2}$ and $E\left(\bar{X}^{2}\right)=\mu^{2}+\sigma^{2} / n$, we have

$$
\begin{aligned}
E\left(S^{2}\right) & =\frac{1}{n-1}\left[\sum_{i=1}^{n}\left(\mu^{2}+\sigma^{2}\right)-n\left(\mu^{2}+\sigma^{2} / n\right)\right] \\
& =\frac{1}{n-1}\left(n \mu^{2}+n \sigma^{2}-n \mu^{2}-\sigma^{2}\right) \\
& =\sigma^{2}
\end{aligned}
$$

Solution Question No. 2
A. The sample statistics were 159.3 for the sample mean and 43.5 for the standard deviation.
$1-\alpha=0.95 \rightarrow \alpha=0.05 \rightarrow \alpha / 2=0.025$,
Standard deviation $=S=43.5, n=15$
95% confidence interval for μ is given by:
$\mathrm{t}_{0.025,14}=2.145$
$\mathrm{t}_{0.025,14}(\mathrm{~s} / \mathrm{Vn})=2.145(43.5 / \sqrt{ } 14)=11.6$
$159.3 \pm 2.145(43.5 / \sqrt{ } 14) \rightarrow$
$(159.3-24.94,159.3+24.94) \rightarrow(134.6,184.24)$

B. Course	Credits (w)	Grade (X)
Biostatistics	3	A $(4$ points $)$
Mathematics	3	C $(2$ points $)$
Machine Learning	4	B 3 points $)$
Databases	2	D $(1$ points $)$

$$
\bar{x}=\frac{\sum w_{i} x_{i}}{\sum w_{i}}=\frac{3(4)+3(2)+4(3)+2(1)}{3+3+4+2}=2.7
$$

The grade point average is 2.7
Solution Question No. 3
A. $C . V .(A)=\frac{\sigma}{\bar{x}} .100=\frac{5}{34.5} \cdot 100=14.49$
C.V. $(B)=\frac{\sigma}{\bar{x}} .100=\frac{4.5}{28.5} .100=15.79$

Factory B has greater variability in individual wages, since C.V. of factory B is greater than C.V of factory A.

B.

Note that the sampling distribution of \bar{X} is normal, with mean $\mu_{\bar{X}}=100$ ohms and a standard deviation of

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}=\frac{10}{\sqrt{25}}=2
$$

Therefore, the desired probability corresponds to the shaded area in Fig. 7-7. Standardizing the point $\bar{X}=95$ in Fig. 7-7, we find that

$$
z=\frac{95-100}{2}=-2.5
$$

and therefore,

$$
\begin{aligned}
P(\bar{X}<95) & =P(Z<-2.5) \\
& =0.0062
\end{aligned}
$$

Solution Question No. 4
A. Step 1. Ascendingly
$2,3,5,6,8,10,12,15,18,20$
Step 2. Count how many numbers that are less than 12.

Step 3. Since we have 6 numbers <12, then:

$$
P=\frac{6+.5}{10} \cdot 100=65 \text { th percentile }
$$

The percentile rank of 12 is the 65 th percentile.
B. Complete the blanks

Class	Frequency	Class boundaries	Class Midpoints	Cumulative Frequency	Percentage
$100-104$	2	$99.5-104.5$	102	2	4%
$105-109$	8	$104.5-109.5$	107	10	16%
$110-114$	18	$109.5-114.5$	112	28	36%
$115-119$	13	$114.5-119.5$	117	41	26%
$120-124$	7	$119.5-124.5$	122	48	14%
$125-129$	1	$124.5-129.5$	127	49	2%
$130-134$	1	$129.5-134.5$	132	50	2%
Total	50				100%

GOOD LUCK,

غوذج اجابة امتحان الاحصاء العضوية المستوى الثالث معلوماتية طبية برامج خاصة
كلية الحاسبات والذكاءالاصطناعى
/2/ عمد عبدالجواد امد عبدالجا المواد
مدرس - كلية العلوم - قسم الرياضيات

