CHAPTER 5

MEMORY MANEGEMENT

Memory Allocation

e dynamic storage allocation problem concerns
how to satisfy a request of size n from a list of
free holes.

e The solutions:

— First fit.

* Allocate the first hole that is big enough.

e Searching can start either at the beginning of the set of
holes or at the location where the previous first-fit search
ended.

* We can stop searching as soon as we find a free hole that is
large enough.

Memory Allocation

* Best fit.
— Allocate the smallest hole that is big enough.

— We must search the entire list, unless the list is
ordered by size.

 Worst fit.

— Allocate the largest hole.

— we must search the entire list, unless it is sorted by
Size.

— This strategy produces the largest leftover hole, which
may be more useful than the smaller leftover hole
from a best-fit approach.

Fragmentation

* is a phenomenon in which storage space is
used inefficiently, reducing capacity or
performance and often both.

* There are two different fragmentation:
— external fragmentation and
— internal fragmentation.

External fragmentation

e exists when there is enough total memory space
to satisfy a request but the available spaces are
not contiguous:

— storage is fragmented into a large number of small
holes.

— That happen when the processes are loaded and
removed from memory,

— the free memory space is broken into little pieces.

— If all these small pieces of memory were in one big
free block instead, we might be able to run several
more processes this solution called compaction.

Internal fragmentation

e exists when the memory allocated to a process

may be slightly larger than the requested
memory.

* Consider a hole of 18,464 bytes.

— Suppose that the next process requests 18,462 bytes.

— |If we allocate exactly the requested block, we are left
with a hole of 2 bytes.

— to avoiding this problem is to break the physical
memory into fixed-sized blocks and allocate memory
in units based on block size.

Segmentation

IS @ memory-management scheme that
supports programmer view of memory.

programmer thinks of it as a main program
with a set of methods, procedures, or
functions.

It may also include various data structures:
objects, arrays, stacks, variables, and so on.

Each of these modules or data elements is
referred to by name.

Segmentation

Segments vary in length,

the length of each is defined by its purpose in
the program.

Each segment has a name and a length.

Segments are numbered and are referred to
by a segment number, rather than by a
segment name.

Each segment has a segment base and a
segment limit stored in segment table.

Segmentation

* Consider we have five segments numbered
from O through 4.

 The segment table has a separate entry for
each segment,

— the beginning address of the segment in physical
memory (or base)

— and the length of that segment (or limit).

— For example, segment 2 is 400 bytes long and
begins at location 4300.

Segmentation

subroutine stack
1400
2400
symbol
segment 0 table
limit | base
Sart segment 4 0(1000 | 1400
9 1| 400 | 8300 3200
main 2 400 | 4300
program 3| 1100 | 3200
4| 1000 | 4700 Segment 3

segment table 4300

segment 2

segment 2
4700

logical address space segment 4

5700

6300
segment 1

6700
physical memory

Paging

breaking physical memory into fixed-sized blocks
called frames

breaking logical memory into blocks of the same
size called pages.

When a process is to be executed, its pages are
loaded into any available memory frames from
their source.

The backing store is divided into fixed-sized
blocks that are the same size as the memory
frames or clusters of multiple frames.

Paging

Every address generated by the CPU is divided
Into two parts:

— a page number (p) and

— a page offset (d).

— The page number is used as an index into a page
table.

— The page table contains the base address of each page
in physical memory.

— This base address is combined with the page offset to
define the physical memory address that is sent to the
memory unit

CPU

Paging

page table

logical physical
address address f0000 ... 0000
d f | d
[
f1111 ... 111
p D ——
e T

?f

physical
memory

Paging

frame
number
page 0 0
01
page 1 10 a 1| page O
213
age 2 2
pag 3=
page 3 page table 3| page 2
I'D'giﬂal 4 page i
memory
5
6
7| page 3

physical
memory

Paging

* The size of a page is a power of 2,

* varying between 512 bytes and 1 GB per page,
depending on the computer architecture.

* |f the size of the logical address space is 2™,
and a page size is 2" bytes,

— then the high-order m - n bits of a logical address
designate the page number,

— and the n low-order bits designate the page
offset.

page number page offset
p d

M —H 1

Paging

0| a 0
1 b
2| €
3 | d
4 | e 4 i
5 | f — i
6| g 5] K
7 | h 116 [
8 | 21 B m
9| | o | n
10| k 32 0
111 1 page table p
12| m 12
13| n
14| o
15| p
logical memory 16
20 a
b
c
d
24 | ©
f
g
h
28

physical memory

Paging

the logical address, n =2 and m = 4.
Using a page size of 4 bytes and

a physical memory of 32 bytes (8 pages),
Logical address O is page 0O, offset 0.
we find that page O is in frame 5.

— logical address 0 maps to physical address 20 [= (5 x 4) + 0].
Logical address 3 (page O, offset 3)

— maps to physical address 23 [= (5 x 4) + 3].
Logical address 4 is page 1, offset O;

— page 1 is mapped to frame 6.
— logical address 4 maps to physical address 24 [= (6 x 4) + 0].

Logical address 13 maps to physical address 9.

Paging

we have no external fragmentation
we may have some internal fragmentation.

If the memory requirements of a process do not
match page boundaries, the last frame allocated
may not be completely full.

— For example, if page size is 2,048 bytes,

— a process of 72,766 bytes will need 35 pages plus
1,086 bytes.

— It will be allocated 36 frames, resulting in internal
fragmentation of 2,048 - 1,086 = 962 bytes.

Paging

small page sizes are desirable.
overhead is involved in each page-table entry,

and this overhead is reduced as the size of the pages
Increases.

disk I/O is more efficient when the amount data being
transferred is larger.

page sizes have grown over time as processes, data
sets, and main memory have become larger.

Today, pages are between 4 KB and 8 KB in size.

Some CPUs and kernels even support multiple page
sizes.

— For instance, Solaris uses page sizes of 8 KB and 4 MB,
depending on the data stored by the pages.

References

* ABRAHAM SILBERSCHATZ, PETER BAER
GALVIN, GREG GAGNE “OPERATING SYSTEM
CONCEPTS” NINTH EDITION, Wiley

