Faculty of Computers \& Artificial Intelligence, Benha University

Academic Year: \qquad / \qquad

First Semester
\square Second SemesterSummer

Program Name:

\qquad

Course Name:

\qquad

Exam Date: \qquad

Question No	Marks attained	Full Mark	Examiner
Q1		$\mathbf{1 0}$	
Q2		$\mathbf{1 3}$	
Q3		17	
Q4		10	
Q5			
Q6			
Q7			
Q8			
Q9			
Q10			

Total For written exam		50

Class Work			
TOTAL			
MARKS			

Faculty of Computers \& Artificial Intelligence
$1^{\text {st }}$ Term (January 2022) Final Exam
Medical Informatics Program
Course Code: MBS151 Level: $1^{\text {st }}$ level
Subject: Principles of Chemistry

Benha University
Date: 3 / 2 /2022
Time: 3 Hours
Total Marks: 50 Marks
Examiner(s): Prof. Dr. Alaa S. Amin
Dr. Hesham El-Feky

Answer the following questions [4 questions in 4 pages]:

Question No. 1
 [10 Marks]

Calculate and draw the Lewis structure for the following ions: (10 marks)

- $\quad \mathrm{NH}_{4}^{+}$[atomic number of $(\mathrm{N}=7)$ and $(\mathrm{H}=1), \mathrm{N}$-atom is the central atom].
- $\quad B F_{4}^{-}$[atomic number of $(F=9)$ and $(B=5), B$-atom is the central atom].

$$
\mathrm{NH}_{4}^{+}
$$

VE=5+4-1=8 electrons
For saturated state $=1 * 8+4 * 2=16$ electrons
Shared elect. $=16-8=8$ electrons
Number of bonds= $8 / 2=4$ bonds
Unshared= 8-8 = 0 electrons

Formal charge of $\mathrm{N}=5-4-0=+1$
Formal charge of each $\mathbf{H}=\mathbf{1 - 1 - 0}=\mathbf{0}$

$$
B F_{4}^{-}
$$

$\mathrm{VE}=3+4 * 7+1=32$ electrons
For saturated state $=5 * 8+0 * 2=40$ electrons
Shared elect. $=40-32=8$ electrons
Number of bonds= $8 / 2=4$ bonds
Unshared= 32-8 = 24 electrons

Formal charge of $B=3-4-0=-1$
Formal charge of each $F=7-1-6=0$

Question No. 2

[13 Marks]

- Choose the correct answer

1- sulphur dioxide has
a) No resonance structure
b)- Three resonance structure
c) Four resonance structure
d) Two resonance structure

$\mathbf{2 - F o r m a l}$ charge equal to

a- Group number plus number of bond minus number of unshared electron
b- Group number minus number of bond plus number of unshared electron
c- Group number minus number of bonds minus number of unshared electron d- Number of bond minus group number minus number of unshared electron

3-According to Lewis structure nitric acid has
a) No resonance structure
b) Three resonance structure
d) Four resonance structure
d) Two resonance structure

4- The force of the gas that the gas exerts on the walls of the container divided by the surface area of the container is called the of gas
a- pressure b- volume c-surface area d- none of these
5- A gas occupies 180 mL under a pressure of 1.5 atm if the temp. is held const, at 1 atm the gas will occupy. \qquad mL
a-270
b- 540
c- 200
d- none of these

6- At $45^{\circ} \mathrm{C}, \mathrm{N}_{2}$ gas occupies 159 mL . if the temperature of it is decreased to zero ${ }^{\circ} \mathrm{C}$, it will occupy mL at constant pressure.
a-68.25
b- 136.5
c- 220 d- none of these

7- The pressure of 0.5 mole Cl_{2} gas that occupies 10 L container at $100{ }^{\circ} \mathrm{C}$, equals....
a- 0.766 atm
b- 50 atm
c- 1.532 atm
d- none of these

8- The weight of one liter NH_{3} gas at $100{ }^{\circ} \mathrm{C}$ and 2.5 atm equals

a- 0.766 gm
b- 150 gm
c- 1.276 gm
d- none of these

9- the density of bromine gas $\left(\mathrm{Cl}_{2}\right)$ at STP equals.... (Atomic weight of $\mathbf{C l}=\mathbf{3 5 . 5}$) a- $0.003 \mathrm{gm} / \mathrm{ml} \quad$ b- $1.5 \mathrm{gm} / \mathrm{ml} \quad$ c- $1.207 \mathrm{gm} / \mathrm{ml} \quad$ d- none of these

10- what volume of O_{2} is required to react with $30 \mathrm{~L} \mathrm{C} \mathrm{C}_{2} \mathrm{H}_{6}$ if all gases are measured at same temperature and pressure according to the following reaction:

$$
\text { a- } 105 \mathrm{~L} \xrightarrow[\text { b- } 225 \mathrm{~L}]{2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \longrightarrow \underset{2}{ } 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}} \mathrm{c}-50 \mathrm{~L} \quad \text { d- none of these }
$$

11- a mixture of 32 gm of $\mathrm{O}_{2}+28 \mathrm{gm}$ of N_{2} has a total pressure 1.2 atm . The partial pressure of O_{2} equals
(Atomic weight of $\mathrm{O}=16 \mathrm{~g} \mathrm{\&} \mathrm{N}=14 \mathrm{~g}$)
a- 1 atm
b- 0.6 atm
c- 2.4 atm
d- none of these

12-10 L container is filled with a gas under a pressure of 1 atm at $0^{\circ} \mathrm{C}$, at what temperature will the pressure inside the container to be 5 atm
a- 1365 K
b- 50 K
c- 200 K
d- none of these

13- How many grams of Fe are needed to produce 200 L of H_{2} at STP according to the following equation: $\mathbf{3 F e}+\mathbf{4} \mathbf{H}_{\mathbf{2}} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+\mathbf{4} \mathbf{H}_{\mathbf{2}}$ (Atomic weight of $\mathrm{Fe}=\mathbf{5 6} \mathrm{g}$)
a- $750.5 \mathrm{~g} \quad$ b- $375.2 \mathrm{~g} \quad$ c- $240.3 \mathrm{~g} \quad \mathrm{~d}$ - none of these
Question No. 3 (True or false)
[17 marks]
1- Any two or more gases can be mixed in any propotions to prepare uniform mixture. ($\sqrt{ }$)
2- gas can be easily compressesd as it consists of widely separated molecules ($\sqrt{ }$)
3- Boyle stated that the pressure of the gas is directly proportional to its volume at constant temperature (\mathbf{X})
4- The volume of gas is inversely proportional to its temperature at constant pressure (\mathbf{X})
5- the pressure of the gas is directly proportional to its temperature at constant volume ($\sqrt{ }$)
6-1 mole of a gas occupies half volume that $\mathbf{2}$ moles of this gas at fixed pressure and temperature ($\sqrt{ }$)
7- the number of moles of the gas varies directly with its volume at constant temperature and pressure ($\sqrt{ }$)
8- The actual volume of the individual molecules of the gas is negligible compared to the whole volume of the gas $(\sqrt{ })$
9 - Equal volumes of all gases at the same temperature and pressure contain the same number of molecules $(\sqrt{ })$
10- A mole of N_{2} occupies the same volume as a mole of O_{2} will occupy at the same Temp and pressure ($\sqrt{ }$)
11- the molecular weight of the gas equals the weight of 242 L of it at STP (X)
12- the total pressure of a mix of two gases equals the sum of the partial pressures of the two gases if they can react with each other (X)

13- mixing of two gases or more than two doesn't change the average kinetic energy of any of these mixed gases at the same temperature $(\sqrt{ })$
14- the number of moles of any gas is the ratio between its weight and its volume (\mathbf{X}) 15- the unit of pressure is called Pascal which equals $\mathbf{K g} / \mathbf{m} . \mathbf{S}^{2} \quad(\sqrt{ })$
16- the gas molecules expand to fill its container ($\sqrt{ }$)
17- the molecules of any gas can easily fit between the molecules of another gas $(\sqrt{ })$

Question No. 4

 [10 marks]a) Glucose compound contains $\mathbf{4 0 \%} \mathrm{C}, 6.73 \% \mathrm{H}$ and the rest is O . If its molecular weight is 180 , what is its molecular formula? (atomic weight of ($\mathrm{C}=12$), $(\mathrm{H}=1)$ and ($\mathrm{O}=16$)

$\mathrm{C}:$	H	$:$	\mathbf{O}	
40	$:$	6.73	$:$	53.27
3.33 mole $:$	6.73 mole $:$	3.3 mole		
1	$:$	2	$:$	1

Empirical formula $=\mathbf{C H}_{2} \mathbf{O} \quad$ empirical weight $=\mathbf{1 2 + 2 + 1 6 = 3 0}$
Molecular formula $=\mathbf{n}$ * empirical formula.
$180=\mathrm{n} * 30$
$\mathrm{N}=6$
Molecular formula $=6^{*} \mathrm{CH}_{2} \mathrm{O}=\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
b) How many moles of \mathbf{H}_{2} can be theoretically prepared from the reaction between $\mathbf{1 2}$ moles of Fe and 16 moles of $\mathrm{H}_{2} \mathrm{O}$ according to the following equation:

$$
3 \mathrm{Fe}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{H}_{2}
$$

LF of $\mathrm{Fe}=12 / 3=4$
LF of $\mathrm{H}_{2} \mathrm{O}=16 / 4=4$
Thus any of them can be take in calculations
\qquad
3 Fe.
$.4 \mathrm{H}_{2}$
$12 \mathrm{Fe} . ~$
$16 \mathrm{H}_{2} \mathrm{O} . \mathrm{x} \quad \mathrm{x}=16$ moles

GOOD LUCK,

Prof. Dr. Alaa S. Amin
Dr. Hesham H. El-Feky

