الإجابة باللون الأحمر

Faculty of Computers \& Artificial Intelligence
$1^{\text {st }}$ Term (January 2022) Final Exam
Information Security and Digital Forensics Program
Networking and Mobile Technologies Program
Course Code: FBS121, NBS 121 Level: $1^{\text {st }}$ level
Subject: Physics

Benha University
Date: 24/1/2022
Time: 3 Hours
Total Marks: 50 Marks
Examiners): Prof. Dr. Mostafa Y. Elbakry
Prof. Dr. Salah Hamza

Choose the correct answer and shaded its circle in the answer table.

1. In \qquad electric charges move freely in response to an electric force. (a) conductors (b) insulators (c)semiconductors.
2. Charging an object by \qquad requires contact with the object inducing the charge. (a) induction (b)conduction (c) no answer
3. An electric force is $\ldots \ldots$. . to the product of the magnitudes of the charges, q_{1} and q_{2}, of the two particles. (a) proportional (b) inversely proportional (c) no answer
4. An electric force is if the charges are of opposite sign and \qquad if the charges have the same sign. (a) repulsive, attractive (b) attractive, attractive (c) attractive, repulsive
5. Coulomb constant k_{e} is measured in (a) $\mathrm{Nm}^{2} \mathrm{C}^{-2}$
(b) $\mathrm{Nm}^{-2} \mathrm{C}^{2}$
(c) $\mathrm{Nm}^{-2} \mathrm{C}^{-2}$
6. The electron and proton of a hydrogen atom are separated by a distance of about $5.3 \times 10^{-11} \mathrm{~m}$. The magnitudes of the electric force on the other is: (a) $8.2 \times 10^{8} \mathrm{~N}$ (b) $8.2 \times 10^{-8} \mathrm{~N}$ (c) $2.8 \times 10^{8} \mathrm{~N}$
7. \qquad is said to exist in the region of space around a charged object (a) an electric field (b) an electric force (c) an electric potential
8. In Fig. 1 the flux of E through A is (a) $0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (b) $E A \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) $\mathrm{E} / \mathrm{A} \mathrm{Nm}^{2} \mathrm{C}^{-1}$

Fig. 1
9. The flux of electric field of $5 \mathrm{NC}^{-1}$ in the z-direction through a rectangle with area $4 \mathrm{~m}^{2}$ in the xy-plane is (a) $20 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (b) $10 \mathrm{Nm}^{2} \mathrm{C}^{-1}$ (c) $0 \mathrm{Nm}^{2} \mathrm{C}^{-1}$
10. Figure 2 shows a point charge q surrounded by a spherical surface of radius r, the electric flux Φ is given by: (a) $\mathrm{q} / \varepsilon_{\mathrm{o}}$ (b) $4 \pi \mathrm{q} / \mathrm{r}^{2}$ (c) $4 \pi \mathrm{q}$
11. Figure 3 shows a conducting sphere of radius R with charge Q. Then, the electric field at point a and b are: (a) zero, $\mathrm{k}_{\mathrm{e}} \mathrm{Q} / \mathrm{r}^{2}$ (b) $\mathrm{k}_{\mathrm{e}} \mathrm{Q} / \mathrm{r}^{2}$, zero (c) zero, zero
12. According to Coulomb's law, what happens to the attraction of two oppositely charged
objects as their distance of separation increases? (a) increases (b) decreases (c) remains
12. According to Coulomb's law, what happens to the attraction of two oppositely charged
objects as their distance of separation increases? (a) increases (b) decreases (c) remains unchanged.

Fig. 2
13. A positive and a negative charge are initially 4 cm apart. When they are moved closer together so that they are now only 1 cm apart, the force between them is (a) 4 times larger than before (b) 8 times larger than before (c) 16 times larger than before.
14. Two small charged spheres are separated by 2 mm . Which of the following would produce the greatest attractive force? (a) $-1 q$ and $-4 q$ (b) $+2 q$ and $+2 q$ (c) $+2 q$ and $-2 q$
15. If the electric field is E at a distance d from a point charge, its magnitude will be 2 E at a distance
(a) $\mathrm{d} / 2$
(b) $\mathrm{d} / \sqrt{2}$
(c) 2 d
16. Two unequal point charges are separated as shown in Fig 4. The electric field due to this combination of charges can be zero (a) only in region 1 (b) only in region 2 (c) only in region 3 (d) in both regions 1 and 3 .

17. An electric field of magnitude E is measured at a distance r from a point charge q. If the charge is doubled to 2 q and the electric field is now measured at a distance of 2 r from the charge, the new measured value of the field will be (a) E (b) $\mathrm{E} / 2$ (c) $\mathrm{E} / 4$
18. In Fig. 5, the electric field at "a" is (a) 0 (b) $\sigma / 2 \varepsilon_{\mathrm{o}}$ (c) $\sigma / \varepsilon_{\mathrm{o}}$
19. In Fig. 5, the electric field at "b" is (a) 0 (b) $\sigma / 2 \varepsilon_{\mathrm{o}}$ (c) $\sigma / \varepsilon_{\mathrm{o}}$
20. In Fig. 5, the electric field at "c" is (a) 0 (b) $\sigma / 2 \varepsilon_{\mathrm{o}}$ (c) $\sigma / \varepsilon_{\mathrm{o}}$

Fig. 5

21. The electrical work done on moving charge q distance Δx is (a) $q \Delta x$ (b) $E \Delta x$ (c) $q E \Delta x$
22. The capacitance for parallel-plate capacitor is given by (a) $\varepsilon_{0} A / d$ (b) $k \varepsilon_{0} A / d$ (c) $k A / d$
23. The unit "Volt" is equivalent to: (a) J/C (b) C/J (c) JC
24. The unit "Farad" is equivalent to: (a) VC (b) V/C (c) C/V

- For the two charges in Fig. 6 the electric field due to:

25. q_{1} at P is (a) $-0.36 \times 10^{4} \mathrm{~V}$
(b) $0.76 \times 10^{4} \mathrm{~V}$ (c) $3.36 \times 10^{4} \mathrm{~V}$
26. q_{2} at P is $(\mathrm{a})-1.08 \times 10^{4} \mathrm{~V}$
(b) $0.76 \times 10^{4} \mathrm{~V}$ (c) $1.12 \times 10^{4} \mathrm{~V}$
27. q_{1} and q_{2} (total) at P is (a) $-0.36 \times 10^{4} \mathrm{~V}$
(b) $2.28 \times 10^{4} \mathrm{~V}$
(c) $1.12 \times 10^{4} \mathrm{~V}$

Fig. 6
28. The capacitance C of a capacitor is the ratio of to the magnitude of the \qquad between the plates (a) Q/V (b) E/Q (c) Q/E
29. The charge "A" in Fig. 3 is (a) positive (b) negative (c) no answer
30. The charge "B" in Fig. 3 is (a) positive (b) negative (c) no answer

Fig. 3

31. If the electric field $\mathrm{E}=0$ at a point P then, the electric flux must Φ_{E} be: (a) constant at P (b) zero at P (c) very high at P

- Proton of charge $\mathrm{q}=1.6 \times 10^{-19} \mathrm{C}$ and mass $\mathrm{m}=1.67 \times 10^{-27} \mathrm{Kg}$ move in a circular orbit with radius 2 cm under the effect of a magnetic field intensity 2 T . Then

32. The proton angular frequency is
(a) $2.92 \times 10^{3} \mathrm{~s}^{-1}$
(b) $9.2 \times 10^{5} \mathrm{~s}^{-1}$
(c) $1.92 \times 10^{7} \mathrm{~s}^{-1}$
33. The proton velocity in its orbit is (a) $8.83 \times 10^{6} \mathrm{~m} / \mathrm{s}$
(b) $3.83 \times 10^{5} \mathrm{~m} / \mathrm{s}$ (c) $33.8 \times 10^{4} \mathrm{~m} / \mathrm{s}$
34. Time required for one evolution is (a) $0.327 \times 10^{-6} \mathrm{~s}$
(b) $0.237 \times 10^{-5} \mathrm{~s}$
(c) $0.27 \times 10^{-8} \mathrm{~S}$
35. The continuity equation which express the local conservation of charge is (a) $\nabla^{2} J=\rho$
(b) $\nabla \cdot \mathrm{J}+\frac{\partial \rho}{\partial \mathrm{t}}=0$
(c) $\nabla^{2} \cdot \mathrm{~J}+\frac{\partial \rho}{\partial \mathrm{t}}=0$
(d) $\nabla \cdot \mathrm{J}^{2}+\frac{\partial \rho}{\partial \mathrm{t}}=0$
36. Using Boit and savart law the vector magnetic potential A is given by
(a) $\frac{\mu_{0}}{4 \pi} \nabla x \int_{V} \frac{J^{\prime}\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} d^{3} r^{\prime}$
(b) $\frac{\mu_{o}}{4 \pi} \int_{V} \frac{J^{\prime}\left(r^{\prime}\right)}{\left|r-r^{\prime}\right|} d^{3} r^{\prime}$
(c) $\frac{\mu_{0}}{4 \pi} \int_{\mathrm{V}} \frac{\nabla \mathrm{J}^{\prime}\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|} \mathrm{d}^{3} \mathrm{r}^{\prime}$
(d) $\frac{\mu_{0}}{4 \pi} \nabla \cdot \int_{V} \frac{\mathrm{~J}^{\prime}\left(\mathrm{r}^{\prime}\right)}{\left|\mathrm{r}-\mathrm{r}^{\prime}\right|} \mathrm{d}^{3} \mathrm{r}^{\prime}$
37. The Maxwell equation which express the Faraday law is given by (a) $\nabla \times \mathrm{E}+\frac{\partial \rho}{\partial \mathrm{t}}=0$
(b) $\nabla \times E+\frac{\partial B}{\partial t}=0$
(c) $\nabla \cdot \mathrm{E}+\frac{\partial \mathrm{B}}{\partial \mathrm{t}}=0$
(d) $\nabla \times B+\frac{\partial \mathrm{E}}{\partial \mathrm{t}}=0$
38. There are no single pole of magnetic field" this is expressed by The Maxwell equation as
(a) $\nabla \times B=0$
(b) $\nabla \times E+\frac{\partial \mathrm{B}}{\partial \mathrm{t}}=0$
(c) $\nabla \bullet \mathrm{B}+\frac{\partial \mathrm{E}}{\partial \mathrm{t}}=0$
(d) $\nabla \bullet B=0$
39. The scalar potential of electric field ϕ is deduced from electric field in the equation (a) $E=-\nabla \times \phi$
(b) $\mathrm{E}=-\nabla \bullet \phi$
(c) $\mathrm{E}=-\nabla \phi$
(d) $\mathrm{E}=\nabla \phi$
40. The vector magnetic potential A is deduced from magnetic field B as (a) $B=-\nabla \bullet A$
(b) $\mathrm{B}=\nabla \times \mathrm{A}$
(c) $\mathrm{B}=\nabla^{2} \mathrm{~A}$
(d) $\mathrm{B}=\nabla \mathrm{A}$

GOOD LUCK,
Prof. Dr. Mostafa Y. Elbakry
Prof. Dr. Salah Hamza

